July 11, 2019

Light dark matter is a thousand times less likely to bump into regular matter than previous astrophysical analyses allowed

A SLAC/Stanford study of the population of satellite galaxies orbiting the Milky Way provides new clues about the particle nature of dark matter.

By Manuel Gnida

A team led by scientists from the Department of Energy’s SLAC National Accelerator Laboratory and Stanford University has narrowed down how strongly dark matter particles might interact with normal matter. Based on the number and distribution of small satellite galaxies seen orbiting our Milky Way, the team found this interaction to be at least a thousand times weaker than the strongest interaction allowed by previous astrophysical analyses.

“Improving our understanding of these interactions is important because it’s one of the factors that helps us determine what dark matter can and cannot be,” said Risa Wechsler, director of the SLAC/Stanford Kavli Institute for Particle Astrophysics and Cosmology and the study’s senior author. The study can also help researchers refine their models for the evolution of the universe because dark matter and its interactions with gravity play such a fundamental role in how galaxies form, she said.

Study lead author Ethan Nadler, a graduate student working with Wechsler, said, “Our results exclude dark matter properties in a mass range that has been largely unexplored before, nicely complementing the outcomes of other experiments that set tight limits for heavier dark matter particles.”

The researchers recently published their results in The Astrophysical Journal Letters.    

The ‘missing satellites’ conundrum

Most of the structure in today’s universe can be explained with a quite simple dark matter model. It assumes that dark matter is relatively “cold,” meaning it moved very slowly compared to the speed of light, and “collisionless,” meaning it doesn’t interact with itself or regular matter. As the universe expands, gravity causes dark matter to clump together and form dense dark matter halos. Dark matter also pulls in regular matter around it, concentrating regular matter and initiating galaxy formation inside dark matter halos.

still frame for dark matter video
Video
Simulation of the formation of the dark matter structure surrounding the Milky Way, from the early universe to today. Gravity makes dark matter clump together and form dense structures, referred to as halos (bright areas). The number and distribution of halos depends on the properties of dark matter, such as its mass and its likelihood to interact with normal matter. Galaxies are thought to form inside these halos. In a new study, SLAC and Stanford researchers have used measurements of faint satellite galaxies orbiting the Milky Way to derive limits on how often dark matter particles can possibly collide with regular matter particles. (Ethan Nadler/Risa Wechsler/R. Kaehler/SLAC National Accelerator Laboratory/Stanford University)

This “cold dark matter” model works well on very large scales, including clusters of galaxies, and describes how typical galaxies are clustered in the universe. But on much smaller scales – for galaxies smaller than our Milky Way, for example – the simple model seemed to cause problems. It predicts that the Milky Way’s halo is surrounded by thousands of smaller subhalos, so there should be also thousands of smaller satellite galaxies orbiting our galaxy. Yet, by the early 2000s, researchers only knew of about 10 of them.

“The apparent discrepancy between observations and predictions made people think there is a serious issue with the model, but recently this has become less of a problem,” Nadler said.

“Increasingly sensitive astrophysical surveys have discovered many more faint satellite galaxies, and we expect next-generation instruments like the Large Synoptic Survey Telescope to find hundreds more if the simplest cold dark matter model is correct. Thus, if fewer galaxies are observed, this could indicate that the simplest model is not exactly correct,” he said. “At the same time, we don't expect the smallest halos to host galaxies, so understanding the connection between galaxies and halos is crucial to make conclusions about the nature of dark matter.”  

Limiting what dark matter can be

One way the dark matter model can be modified is by assuming that dark matter was produced in a “warmer” state in the early universe, meaning it moved faster than in the simple model and was less likely to clump. This would result in a smaller number of dark matter halos and cut down the number of observable satellite galaxies. Because the mass of dark matter controls its velocity when it was produced in the early universe, the abundance of satellites can be used to determine the minimum mass of warm dark matter particles. 

Here, the researchers looked at a different property of dark matter in other non-standard models: its interaction with normal matter. They showed that collisions between dark matter particles and regular matter particles like protons and neutrons would also reduce the observable satellite population.

Dark matter simulation
Simulation of the dark matter structure surrounding the Milky Way. Driven by gravity, dark matter forms dense structures, referred to as halos (bright areas), in which galaxies are born. The number and distribution of halos, and therefore also of galaxies, depends on the properties of dark matter, such as its mass and its likelihood to interact with normal matter. (Ethan Nadler/Risa Wechsler/Ralf Kaehler/SLAC National Accelerator Laboratory/Stanford University)

 

“If the interaction is very strong, it erases small dark matter halos and suppresses a lot of the small structure,” Wechsler said. “But we can actually see some smaller structures based on the tiny galaxies they host, so the interaction can’t be too strong either.” In other words, the number of observable satellite galaxies provides a path to learning about these fundamental interactions.

In their study, the team varied the strength of dark matter interactions in the early universe and ran simulations to predict how that affected the distribution of dark matter halos at present. Then, they tried to fit known satellite galaxies into the halos.

“What’s really exciting is that our study nicely bridges experimental observations of faint galaxies today with theories of dark matter and its behavior in the early universe. It connects a lot of pieces, and by doing so it tells us something very profound about dark matter,” Nadler said.

The researchers found that in order to make everything fit together, dark matter particles with relatively low mass must interact at least a thousand times more weakly with normal matter than the previous limit.

Before this work, the leading astrophysical constraints in this mass range were set by studies of the cosmic microwave background, the earliest light in the universe, conducted by Vera Gluscevic of the University of Southern California and Kimberly Boddy of Johns Hopkins University. Both scientists are also key contributors of this study, which successfully joins early-universe calculations with studies of galaxies to get novel insight into dark matter physics.

Meanwhile, direct detection experiments, which search for signs of dark matter with sensitive underground detectors, set stringent limits on the interaction strength for heavier dark matter particles, making studies of satellite galaxies highly complementary to those experiments.

“Although we still don’t know what dark matter is made of, our results are a step forward that sets tighter limits on what it actually can be,” Nadler said.  

Financial support came from the National Science Foundation and the Department of Energy.


Citation: Ethan Nadler et al., The Astrophysical Journal Letters, 17 June 2019 (10.3847/2041-8213/ab1eb2)

Contact

For questions or comments, contact the SLAC Office of Communications at communications@slac.stanford.edu.


About SLAC

SLAC National Accelerator Laboratory explores how the universe works at the biggest, smallest and fastest scales and invents powerful tools used by researchers around the globe. As world leaders in ultrafast science and bold explorers of the physics of the universe, we forge new ground in understanding our origins and building a healthier and more sustainable future. Our discovery and innovation help develop new materials and chemical processes and open unprecedented views of the cosmos and life’s most delicate machinery. Building on more than 60 years of visionary research, we help shape the future by advancing areas such as quantum technology, scientific computing and the development of next-generation accelerators.

SLAC is operated by Stanford University for the U.S. Department of Energy’s Office of Science. The Office of Science is the single largest supporter of basic research in the physical sciences in the United States and is working to address some of the most pressing challenges of our time.

Dig Deeper

Related stories

News Feature

In 1974, the independent discovery of the J/psi particle at SLAC and Brookhaven National Laboratory rocked the physics world, and entire textbooks had to...

50th anniversary of the J/psi discovery
News Brief

The observatory's practice camera has captured its first on-sky data.

A telescope pointed through open doors in its building's roof.
News Feature

SLAC hosted two faculty members from institutions historically underrepresented in the research community via the Visiting Faculty Program.

Fred Lacy and Kolo Wamba stand in front experimental equipment.
News Feature

In 1974, the independent discovery of the J/psi particle at SLAC and Brookhaven National Laboratory rocked the physics world, and entire textbooks had to...

50th anniversary of the J/psi discovery
News Brief

The observatory's practice camera has captured its first on-sky data.

A telescope pointed through open doors in its building's roof.
News Feature

SLAC hosted two faculty members from institutions historically underrepresented in the research community via the Visiting Faculty Program.

Fred Lacy and Kolo Wamba stand in front experimental equipment.
News Brief

This research advances our understanding of Earth's deep interior and exoplanets, opening new research avenues in Earth and planetary sciences.

mec_super_earth
News Feature

The prototype DUNE 2x2 detector will capture up to 10,000 neutrino interactions per day.

Two people in blue helmets examine experimental equipment.
News Feature

Vera C. Rubin Observatory will unite coordinated observations of cosmic phenomena using the four messengers of the universe.

Two stars collide, sending particles to earth.